Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Trials ; 23(1): 484, 2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1885333

ABSTRACT

BACKGROUND: Globally rifampicin-resistant tuberculosis disease affects around 460,000 people each year. Currently recommended regimens are 9-24 months duration, have poor efficacy and carry significant toxicity. A shorter, less toxic and more efficacious regimen would improve outcomes for people with rifampicin-resistant tuberculosis. METHODS: TB-PRACTECAL is an open-label, randomised, controlled, phase II/III non-inferiority trial evaluating the safety and efficacy of 24-week regimens containing bedaquiline and pretomanid to treat rifampicin-resistant tuberculosis. Conducted in Uzbekistan, South Africa and Belarus, patients aged 15 and above with rifampicin-resistant pulmonary tuberculosis and requiring a new course of therapy were eligible for inclusion irrespective of HIV status. In the first stage, equivalent to a phase IIB trial, patients were randomly assigned one of four regimens, stratified by site. Investigational regimens include oral bedaquiline, pretomanid and linezolid. Additionally, two of the regimens also included moxifloxacin (arm 1) and clofazimine (arm 2) respectively. Treatment was administered under direct observation for 24 weeks in investigational arms and 36 to 96 weeks in the standard of care arm. The second stage of the study was equivalent to a phase III trial, investigating the safety and efficacy of the most promising regimen/s. The primary outcome was the percentage of unfavourable outcomes at 72 weeks post-randomisation. This was a composite of early treatment discontinuation, treatment failure, recurrence, lost-to-follow-up and death. The study is being conducted in accordance with ICH-GCP and full ethical approval was obtained from Médecins sans Frontières ethical review board, London School of Hygiene and Tropical Medicine ethical review board as well as ERBs and regulatory authorities at each site. DISCUSSION: TB-PRACTECAL is an ambitious trial using adaptive design to accelerate regimen assessment and bring novel treatments that are effective and safe to patients quicker. The trial took a patient-centred approach, adapting to best practice guidelines throughout recruitment. The implementation faced significant challenges from the COVID-19 pandemic. The trial was terminated early for efficacy on the advice of the DSMB and will report on data collected up to the end of recruitment and, additionally, the planned final analysis at 72 weeks after the end of recruitment. TRIAL REGISTRATION: Clinicaltrials.gov NCT02589782. Registered on 28 October 2015.


Subject(s)
Antitubercular Agents/therapeutic use , Diarylquinolines/therapeutic use , Linezolid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Adolescent , Adult , Antibiotics, Antitubercular/pharmacology , Antibiotics, Antitubercular/therapeutic use , Antitubercular Agents/pharmacology , Diarylquinolines/pharmacology , Humans , Linezolid/pharmacology , Pandemics , Rifampin/pharmacology , Treatment Outcome , Tuberculosis, Multidrug-Resistant/diagnosis , Young Adult
2.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 628-639, 2022 05.
Article in English | MEDLINE | ID: covidwho-1858907

ABSTRACT

Bedaquiline (BDQ) is recommended for treatment of multidrug-resistant tuberculosis (MDR-TB) for the majority of patients. Given its long terminal half-life and safety concerns, such as QTc-prolongation, re-introducing BDQ after multiple dose interruption is not intuitive and there are currently no existing guidelines. In this simulation-based study, we investigated different loading dose strategies for BDQ re-introduction, taking safety and efficacy into account. Multiple scenarios of time and length of interruption as well as BDQ re-introduction, including no loading dose, 1- and 2-week loading doses (200 mg and 400 mg once daily), were simulated from a previously published population pharmacokinetic (PK) model describing BDQ and its main metabolite M2 PK in patients with MDR-TB. The efficacy target was defined as 95.0% of the average BDQ concentration without dose interruption during standard treatment. Because M2 is the main driver for QTc-prolongation, the safety limit was set to be below the maximal average M2 metabolite concentration in a standard treatment. Simulations suggest that dose interruptions between treatment weeks 3 and 72 (interruption length: 1 to 6 weeks) require a 2-week loading dose of 200 mg once daily in the typical patient. If treatment was interrupted for longer than 8 weeks, a 2-week loading dose (400 mg once daily) was needed to reach the proposed efficacy target, slightly exceeding the safety limit. In conclusion, we here propose a strategy for BDQ re-introduction providing guidance to clinicians for safe and efficacious BDQ dosing.


Subject(s)
Long QT Syndrome , Tuberculosis, Multidrug-Resistant , Antitubercular Agents , Diarylquinolines/pharmacokinetics , Humans , Tuberculosis, Multidrug-Resistant/drug therapy
3.
Lancet Infect Dis ; 22(4): 496-506, 2022 04.
Article in English | MEDLINE | ID: covidwho-1839428

ABSTRACT

BACKGROUND: Bedaquiline improves outcomes of patients with rifampicin-resistant and multidrug-resistant (MDR) tuberculosis; however, emerging resistance threatens this success. We did a cross-sectional and longitudinal analysis evaluating the epidemiology, genetic basis, and treatment outcomes associated with bedaquiline resistance, using data from South Africa (2015-19). METHODS: Patients with drug-resistant tuberculosis starting bedaquiline-based treatment had surveillance samples submitted at baseline, month 2, and month 6, along with demographic information. Culture-positive baseline and post-baseline isolates had phenotypic resistance determined. Eligible patients were aged 12 years or older with a positive culture sample at baseline or, if the sample was invalid or negative, a sample within 30 days of the baseline sample submitted for bedaquiline drug susceptibility testing. For the longitudinal study, the first surveillance sample had to be phenotypically susceptible to bedaquiline for inclusion. Whole-genome sequencing was done on bedaquiline-resistant isolates and a subset of bedaquiline-susceptible isolates. The National Institute for Communicable Diseases tuberculosis reference laboratory, and national tuberculosis surveillance databases were matched to the Electronic Drug-Resistant Tuberculosis Register. We assessed baseline resistance prevalence, mutations, transmission, cumulative resistance incidence, and odds ratios (ORs) associating risk factors for resistance with patient outcomes. FINDINGS: Between Jan 1, 2015, and July 31, 2019, 8041 patients had surveillance samples submitted, of whom 2023 were included in the cross-sectional analysis and 695 in the longitudinal analysis. Baseline bedaquiline resistance prevalence was 3·8% (76 of 2023 patients; 95% CI 2·9-4·6), and it was associated with previous exposure to bedaquiline or clofazimine (OR 7·1, 95% CI 2·3-21·9) and with rifampicin-resistant or MDR tuberculosis with additional resistance to either fluoroquinolones or injectable drugs (pre-extensively-drug resistant [XDR] tuberculosis: 4·2, 1·7-10·5) or to both (XDR tuberculosis: 4·8, 2·0-11·7). Rv0678 mutations were the sole genetic basis of phenotypic resistance. Baseline resistance could be attributed to previous bedaquiline or clofazimine exposure in four (5·3%) of 76 patients and to primary transmission in six (7·9%). Odds of successful treatment outcomes were lower in patients with baseline bedaquiline resistance (0·5, 0·3-1). Resistance during treatment developed in 16 (2·3%) of 695 patients, at a median of 90 days (IQR 62-195), with 12 of these 16 having pre-XDR or XDR. INTERPRETATION: Bedaquiline resistance was associated with poorer treatment outcomes. Rapid assessment of bedaquiline resistance, especially when patients were previously exposed to bedaquiline or clofazimine, should be prioritised at baseline or if patients remain culture-positive after 2 months of treatment. Preventing resistance by use of novel combination therapies, current treatment optimisation, and patient support is essential. FUNDING: National Institute for Communicable Diseases of South Africa.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Clofazimine/therapeutic use , Cross-Sectional Studies , Diarylquinolines/therapeutic use , Humans , Longitudinal Studies , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Rifampin/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology
4.
BMJ Open ; 10(12): e042390, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-1214972

ABSTRACT

INTRODUCTION: A December 2019 WHO rapid communication recommended the use of 9-month all-oral regimens for treating multidrug-resistant tuberculosis (MDR-TB). Besides the clinical benefits, they are thought to be less costly than the injectable-containing regimens, for both the patient and the health system. STREAM is the first randomised controlled trial with an economical evaluation to compare all-oral and injectable-containing 9-11-month MDR-TB treatment regimens. METHODS AND ANALYSIS: Health system costs of delivering a 9-month injectable-containing regimen and a 9-month all-oral bedaquiline-containing regimen will be collected in Ethiopia, India, Moldova and Uganda, using 'bottom-up' and 'top-down' costing approaches. Patient costs will be collected using questionnaires that have been developed based on the STOP-TB questionnaire. The primary objective of the study is to estimate the cost utility of the two regimens, from a health system perspective. Secondary objectives include estimating the cost utility from a societal perspective as well as evaluating the cost-effectiveness of the regimens, using both health system and societal perspectives. The effect measure for the cost-utility analysis will be the quality-adjusted life years (QALY), while the effect measure for the cost-effectiveness analysis will be the efficacy outcome from the clinical trial. ETHICS AND DISSEMINATION: The study has been evaluated and approved by the Ethics Advisory Group of the International Union Against Tuberculosis and Lung Disease and also approved by ethics committees in all participating countries. All participants have provided written informed consent. The results of the economic evaluation will be published in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: ISRCTN18148631.


Subject(s)
Myocardial Infarction , Antitubercular Agents/therapeutic use , Cost-Benefit Analysis , Diarylquinolines , Ethiopia , Humans , India , Moldova , Myocardial Infarction/drug therapy , Rifampin , Tuberculosis, Multidrug-Resistant/drug therapy , Uganda
5.
Molecules ; 26(6)2021 Mar 17.
Article in English | MEDLINE | ID: covidwho-1138745

ABSTRACT

The COVID-19 outbreak continues to spread worldwide at a rapid rate. Currently, the absence of any effective antiviral treatment is the major concern for the global population. The reports of the occurrence of various point mutations within the important therapeutic target protein of SARS-CoV-2 has elevated the problem. The SARS-CoV-2 main protease (Mpro) is a major therapeutic target for new antiviral designs. In this study, the efficacy of PF-00835231 was investigated (a Mpro inhibitor under clinical trials) against the Mpro and their reported mutants. Various in silico approaches were used to investigate and compare the efficacy of PF-00835231 and five drugs previously documented to inhibit the Mpro. Our study shows that PF-00835231 is not only effective against the wild type but demonstrates a high affinity against the studied mutants as well.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Indoles/chemistry , Indoles/pharmacology , Leucine/chemistry , Leucine/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Binding Sites , Computer Simulation , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , Databases, Protein , Diarylquinolines/chemistry , Diarylquinolines/pharmacology , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Nitrophenols/chemistry , Nitrophenols/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Proline/analogs & derivatives , Proline/chemistry , Proline/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , COVID-19 Drug Treatment
6.
Indian J Tuberc ; 67(4S): S107-S110, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1125540

ABSTRACT

TB is a global disease and the leading cause of death among infectious diseases worldwide. TB was considered incurable till the mid 19th century. The major landmark in the treatment was the discovery of Rifampicin which has led to shorter courses of therapy as compared to the previous regimens which also consisted of injectables. Although, treatment for TB is evolving expeditiously today but a lot needs to be done as far as drug resistant TB (DRTB) is concerned. Non-standard regimens in private sector, lack of access to drug susceptibility testing, delay in the treatment, poor follow up and default in the treatment has led to emergence DRTB. Addition of newer drugs like bedaquiline and delamanid has made oral regimen possible in DRTB as well. Encouraging results of BPaL regimen for extensively drug resistant TB (XDR-TB) may prove to be a game changer. The target of TB elimination by 2025 is onerous considering the huge population, rising DRTB patients and private sector non engagement in the programme despite implementation of second largest national programme of the world.


Subject(s)
Antitubercular Agents/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Diarylquinolines/therapeutic use , Drug Therapy, Combination , Humans , Microbial Sensitivity Tests , Nitroimidazoles/therapeutic use , Oxazoles/therapeutic use
7.
Future Med Chem ; 12(20): 1815-1828, 2020 10.
Article in English | MEDLINE | ID: covidwho-713324

ABSTRACT

Aim: The identification of drugs for the coronavirus disease-19 pandemic remains urgent. In this manner, drug repurposing is a suitable strategy, saving resources and time normally spent during regular drug discovery frameworks. Essential for viral replication, the main protease has been explored as a promising target for the drug discovery process. Materials & methods: Our virtual screening pipeline relies on the known 3D properties of noncovalent ligands and features of crystalized complexes, applying consensus analyses in each step. Results: Two oral (bedaquiline and glibenclamide) and one buccal drug (miconazole) presented 3D similarity to known ligands, reasonable predicted binding modes and micromolar predicted binding affinity values. Conclusion: We identified three approved drugs as promising inhibitors of the main viral protease and suggested design insights for future studies for development of novel selective inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/enzymology , Coronavirus Infections/drug therapy , Drug Discovery , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Betacoronavirus/drug effects , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases/metabolism , Diarylquinolines/chemistry , Diarylquinolines/pharmacology , Drug Design , Glyburide/chemistry , Glyburide/pharmacology , Humans , Ligands , Miconazole/chemistry , Miconazole/pharmacology , Models, Molecular , Molecular Docking Simulation , Pandemics , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL